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THERMAL DISTORTION ANALYSIS OF A

DEPLOYABLE PARABOLIC REFLECTOR

By Lloyd R. Bruck and George H. Honeycutt

i t_ NASA Goddard Space Flight Center

l SUMMARY

The Godd_rd Space Flight Center has performed a thermal

t distortion analysis of the Advanced Technology Satellite (ATS-F)

9.144m (30 ft.) diameter parabolic reflector using NASTRAN
i Level 15.1. The same NASTRAN finite element model was used to

conduct a ig static load analysis and a dynamic analysis of the
I reflector. In addition, a parametric study was made to determine

i which parameters had the greates °'effect on the thermal distortions.
This paper describes the method used to model the construction of

i the reflector and presents the major results of the analyses.

i INTRODUCTION
The ATS-F is the latest in a series of spacecraft designated

as Advanced Technology Satellites. This 3-axis stabilized

synchronous satellite has been designed as a multiple mission
system to allow for numerous con_nunications, meteorological
and scientific studies.

The ATS-F spacecraft is shown in the launch configuration in

Figure 1 and in the orbita) configuration in Figure 2. The

predominate feature of the spacecraft is a 9.144m (30 ft.)
diameter parabolic dish high gain antenna. The success of many

of the spacecraft experiments depends on maintaining the deslgn :,_
surface contour of the parabolic reflector after deployment. In
addition, the spacecraft control system must adhere to stringent

pointing and slewin, requirements for R-F beam positioning.

The surface contouz of the reflector is distorted in orbit

by the thermal environment of space. It is necessary to predict _
what these distortions will be in order to assess the R-F _

performance of the reflector. As there is no practical or
realistic ground test that will provide this data it was necessary

to resort to analytical methods. Accordingly, GSFC has performed

a thermal distortion analysis of the ATS-F reflector using --'
NASTRAN Level 15.1 for selected thermal load cases that produces

the required reflector distortions.

As a partial check on the validity of the NASTR_ model a ig

static deflection analysis was also accomplished. The results
_0
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were compared with an actual measurement of the ig deflections to

provide some information on the accuracy of the model.

To help determine which parameters were most important in
controlling the thermal distortions, a parametric study was made.

In this study the effects of the mesh, riJ temperature, and rib

thermal gradients were varied to determine the relative magnitude
of the effects on the thermal distortions.

In addition,the fine pointing and slewing requirements

necessitated obtaining the dynamic characteristics of the reflector
| With only slight modification to the static NASTRAN model the first

T natural frequency and mode shape were obtained to provide infor-

i mation for design of the control system.
v

The prime contractor for the ATS-F spacecraft is Fairchild

Space and Electronics Company; the subcontractor for the parabolic
reflector is Lockheed Missiles and Space Company. Both of these

organizations provided information which made these analyses

possiDle.

REFLECTOR DESCRIPTION

General

The deployed reflector is composed of 48 flexible ribs
hinged to the spacecraft hub at 7.5 degree increments as shown in

Figure 2. A woven copper coated dacron merh serves as the reflec-

tive surface and is connected betweer each rio at the top edge of

the rib. When stored fur launch, the ribs are wrapped around the

hub with the mesh carefully folded between the ribs. The packaged
reflector is enclosed by a series of doors that are secured by a

circumferential restraining cable. When the restraining cable is

severed, the elastic energy stored in the ribs is released causing

the ribs to unwrap to the deployed position. During deployment
the ribs pivot freely about the hinges _t the hub; when fully -

deployed the hinges are locked. The reflector is designed so that

there is always a small tension load acting on the mesh keeping

it taut during orbit.

•+ Rib Description

i An indiv_ _.al reflector rib is shown in Figure 3. T',. rib
tapers in width ' _,.:its attachment at the hub to the outer edge
of the reflectu_ [he cross section of the rib normal to the

parabolically cur;'ed principal axis is of semi-lenticular shape

and also varies alGng the rib. Each rib is made from a single

piece of aluminum sheet with varying diameter holes cut out along

_ its length. The l.oles are pruvi_ed to permit the heat input from

; the sun to pass freely through the rib to prevent exce_siveiy ,

i0_
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severe thermal gradients.

Mesh Description

The R-F reflective mesh is constructed from copper coated
dacron yarn bundles overcoated with a thin silicone sealant. The

warp yarn running in the lungitudinal direction (radially along
the rib) is made from double strand dacron, 10 pair/cm while the

filling yarn in the transverse direction (circumferential from

rib-to-rib) is made from single strand dacron 12.5 strands/cm.

This form of construction makes the woven mesh behave nonisotrop-

ically and consequently have material properties (modulus of

elasticity and the thermal coefficient of expansion) that differ

, in each principal direction. Tests on the mesh have revealed that
Poisson's ratio is essentially zero for this material in bohh

directions indicating that the yarns in either direction behave

independently of one another when each is loaded individually.

Hub Description
I

The aluminum hub, Figure 4, is composed of two ring sections
connected every 7.5 degrees by risers located midway between each

_. rib. The reflector is protected in the folded position by a cover

as shown in Figure 4. This cover provides no significant load

carrying structure to the hub. The rib hinge attachment to the
hub is also illustrated.

Attachment of the hub to the spacecraft is provided by the

mounting assembly indicated in Figure 5. This assembly, located

every 90 degrees, provides for a rigid attachment of the hub to

the spacecraft except for the rotation that is allowed to take

place at the hinge. The purpose of this method of attachment is
to assist in the isolation of the antenna from any structural

motion created by the spacecraft.

FINITE ELEMENT MODEL

: '_ Rib Model

_ The finite element model of the rib is shown in Figure 6

-. ., where each of the 48 ribs have been represented by i0 bar elements

•_" _ making a total of 480 rib elements. A significant feature of the

,:.... rib model is that the offset between mesh attachment point and the
" rib centroidal axes is retained. The effect of this offset is to

introduce a twisting moment about the rib longitudinal axis when

the rib is loaded in the lateral (circumferential) direction by

mesh loads and a bending of the rib about a circumferential axis

when loaded in a radial direction by the mesh. This offset is
_: shown in Section A-A of Figure 6. ,_

I
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The shear center of the rib and the rib centroidal axis do
not coincide. Prior to the formulation of the I0 element rib

model a much more detailed plate element model of a single rib

was generated which simulated the shear center offs6t. Various

thermal gradients were applied to this model to determine the
resulting twist and warp of the rib. The results of this analysis

indicated that the offset shear center causes only slight twist

and warp of the fz_e rib. Because the mesh would act to resist

the twist of the rib, the restraining force of the mesh would tend

i to further minimize the effect of twist or warp on the thermal

deformations. Therefore, it was concluded the effect of the shear

center offset is minimal and can be neglected.

+ The reflector deflection resulting from thermal or gravita-

' tional loads is determined for grid points at the mesh attachment
point to the rib.

Hinges are provided at the hub for attachment of the ribs

' to the hub and to allow the ribs to rotate to their fully deployed

i configuration. These hinges become fixed at deployment. Forthis reason the rib hinges were fixed in the model.

i Mesh Model

I The reflector mesh has been modeled by membrane elements

I capable of carrying in-plane tension loads. Each mesh section
• between ribs has been subdivided into i0 trapesoidal membranes

that are attached to each corner to the grid points located at

the rib edge. The nonisotropic properties of the mesh have been

reflected in the model parameters; the mesh thermal coefficients

of expansion and modulus of elasticity are given as functions
of temperature.

Hub Model

The hub is modeled with bar elements as shown in the hub _'
segment depicted in Figure 7. A centroidal axis offset of the

upper and lower hub rings at the hinge has been provided in order _ +_

to position the hinge elements in their proper location. Four _

attachment points are provided for securing the hub to the space-
craft. This attachment allows rotation of the hub in the direction

of the hinges as in the actual construction by using the pin flag
option in NASTRAN.

COMPLETE FINITE ELEMENT MODEL

The complete finite element model, Figure 8, is composed
of the hub, mesh, and rib models discussed previously. This

figure was obtained by using the plot module of NASTRAN. A total

of 1404 elements connected between 728 grid points are used to

model the complete reflector. As every grid point is allowed to
i
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_ve 6 degrees of freedom, with the exception of 4 grid points I

_i: _at are fixed simulating the spacecraft, there are 4,344 total

_grees of freedom. [

I In the static analysis the decomposition of the stiffness
_ _trix (semi-bandwidth of 15 terms with 87 active column_ and 14

_ _ws) consumed the bulk of the computer time. Run time using I

_:tandard core on the IBM 360-95 for one static load case was 15
_[nutes, i0 minutes of which was used decomposing the stiffness

_trix.
_- In the dynamic analysis, using the inverse method eigen-

_ i_lue extraction routin_ obtaining one eigenvalue used about 35

: .inutes of the total run time of 38 minutes.

ig ANALYSIS

A Ig load in the -Z direction was placed on the reflector

order to check out the finite element model and to provide a

with static deployment test results of the actual

_ctor. Reflector deflection results are presented as plots

the vertical (Z) deflection of the rib tip at 4.572m (180 in.)
_ versus rib number. Figure 9 illustrates the rib numbering

The ig NASTRAN result and actual test results are compared

Figure 10. This comparison iD4icates good agreement with the
test results was achieved.

ORBITAL THERMAL DEFLECTION ANALYSIS

Thermal Load Input

A reference temperature of 294°K _70°F) was assigned to each

lement to define the as-assembled temperature. Orbital tempera-
distribution for the various orbit hours served as the thermal _

input for the finite element model. The temperatures for each

ib segment (i0 segments Der rib) were determined for an upper node

) and a lower node (T2). These temperatures were averaged in

GSFC analysis to define the temperature assigned to the rib i
lement in the longitudinal direction. The rib gradient across

rib was calculated using (TI-T2)/d where d is the distance _

etween the upper and lower nodes (see Figure Ii). Each mesh
lement _nd each grid point was assigned a temperature; for those
rid points where nodal temperatures were not defined a linear _'

nterpolation was made.

The effect of the spacecraft attachment to the deployed _
eflector is presented by a set of initial displacements at the
our attach points.
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Thermal Deflection Results

Although the deflection results for 12 orbit hours were

determined, only those resulting from orbital thermal loads

developed during orbit hours 5, 12, and 24 for Beta =0 ° will be

presented as they provide a representative sampling of the total
results. Figure 12 presents the satellite orientations for various

orbit hours and defines the orbit angle Beta.

• Orbit Hour 12, Figure 13 - The reflector is completely

shaded by the earth and is very cold. The shrinkage of the reflec-
tor caused the rib tips to deflect to their maximum value.

• Orbit Hour 24, Figure i_ - The reflector sees its least

i severe thermal load. As a consequence its deflections are a
minimum.

• Orbit Hour 5, Figure 15 - One half of the reflector is

shaded by the other half. Because of this effect, the thermal

gradient developed across the rib is relatively large and takes

the shape plotted in Figure 16. Note that the plot of the thermal

gradient across the rib corresponds closely to the plot of the

deflected shape of the reflector; compare Figures 15 and 16.

PARAMETRIC VARIATION STUDY

j In an effort to determine the relative effect of various

model parameters on the deflection of the reflector, a parametric

i variation study was conducted on the finite element model. The

temperature distribution present during orbit hour 5, Beta=0 was
used for the five cases investigated.

Case 1 - This case determined the reflector deflection with

the mesh removed and with the thermal gradient across the width of

the rib set equal to zero. The resultant deflection, Figure 17, i:
caused by the rib temperatures and radial rib gradient only and is

relatively small.

Case 2 - The mesh has been removed and only rib temperatures

"_ and gradients are present, both radially along the rib axis and
across the width of the rib. The results of this variation are

_ ,, shown in Figure 18. Note that the deflections are large and the
'_ ' shape of the plot of the rib deflections again agrees, as expec.ed

with the shape of the plot of the average depthwise temperatu:e

gradient as shown in Figure 16.

Case 3 - The radial mesh elements have been removed and only

_, circumferential mesh elements are present. The rib temperatures

and radial temperature gradient are present along the rib, but the

_, gradient across the width of the rib has been set equal to zero.
_ Deflection results are shown in Figure 19. Although there are

_,_ i ,,
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major differences in the temperature distribution around the cir- _
:cumference of the reflector ranging from II6°K (-251°F) to 269°K |

• (25°F), the net effect on the mesh is that a uniform tension is {i
!created in each circumferential band. This statement is sub-

stanti_ed by the results which indicate a uniform deflection is i

created at the outer edge of the reflector. I

Case 4 - The circumferential mesh elements have been removed

and there is no depthwise rib gradient; the radial mesh elements

remain, as well as the rib temperatures and radial rib gradients.

,_ !Figure 20 presents the results. The net effect of the radial mesh
_can be obtained from subtracting Case 1 results from this case,

Case 4 It would appear that the deflections caused by the radial

mesh element are insignificant for this case.

Case 5 - The effect of varying the depthwise rib gradient is
_ shown in Figure 21. The results of 3 parametric changes are shown:

no gradient, actual gradient, and 3 times the actual gradient. The

}, major impact the rib gradient has on the deflection is evident.

i DYNAMIC ANALYSIS

The finite element model was used to determine the first
_ torsional frequency of the deployed reflector. Comparison of the I

NASTRAN result o_ 1.18 Hz with a value obtained from a modal survey !

test of 1.15 Hz indicates good agreement, i

i A motion picture of the torsional mode was obtained by the

proper adjustment of the amplitude in repeated plots of the modal

displacements in the plot routine and repeating them sequentially
on 16mm film.

CONCLUSION

_[!_i NASTR_ has proven to be a most valuable tool in conducting

the thermal distortion analysis. Because of the capability built

into NASTRAN the parametric study was easily accomplished by the i-
alteration or addition of a few input cards The value of the

I :' data obtained far outweighed the cost of the additional computer

time required. The results of this analysis supplied valuable

_]i_ information on the performance characteristics of the parabolic

antenna and provided insight into the structural interactions of }
_ " the various parts of the reflector.

/_7, The results of the ig analysis compared favorably with
_ available test results which provided some confidence that the

I!!_ model was satisfactory. Again with but a few card changes and

'_ using _ different rigid format the first torsional natural frequency
; and mode shape were obtained.
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The addition of a beam element capable of handling the offset
shear center effect would have saved the considerable time and

effort expended to prove it had little effect in this problem. It

is recommended that this capability be added to NASTRAN.
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F0gure 1. ATS-F Launch Configuration
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